Open Access
Issue
2012
Article Number 03001
Number of page(s) 6
Section Contribution Short-Papers
DOI https://doi.org/10.1051/3u3d/201203001
Published online 24 October 2012
  1. M. Levoy, IEEE Comput. Graph. Appl. 8, 29 (1988) [CrossRef] [Google Scholar]
  2. J. Congote, A. Segura, L. Kabongo, A. Moreno, J. Posada, O. Ruiz, Interactive visualization of volumetric data with WebGL in real-time, in Usage, Usability, and Utility of 3D City Models – European COST Action TU0801 (ACM, New York, NY, USA, 2011), Web3D ’11, pp. 137–146, ISBN 978-1-4503-0774-1, http://doi.acm.org/10.1145/2010425.2010449 [Google Scholar]
  3. T. McLoughlin, R. Laramee, R. Peikert, F. Post, M. Chen, Over Two Decades of Integration-Based, Geometric Flow Visualization, in Computer Graphics Forum (Wiley Online Library, 2010), Vol. 29–6, pp. 1807–1829 [Google Scholar]
  4. M. Aristizabal, J. Congote, A. Segura, A. Moreno, H. Arriegui, O. Ruiz, Hardware-accelerated Web Visualization of Vector Fields. Case Study in Oceanic Currents, in IVAPP-2012. International Conference on Computer Vision Theory and Applications, edited by R.S.L. Paul Richard, Martin Kraus, J. Braz, INSTICC (SciTePress, Rome, Italy, 2012), pp. 759–763, ISBN 978-989-8565-02-0 [Google Scholar]
  5. M.R.M. Silva, I.H. Manssour, C.M.D.S. Freitas, Optimizing Combined Volume and Surface Data Ray Casting, in WSCG (2000) [Google Scholar]
  6. J. Kruger, R. Westermann, Acceleration Techniques for GPU-based Volume Rendering, in VIS ’03: Proceedings of the 14th IEEE Visualization 2003 (VIS’03) (IEEE Computer Society, Washington, DC, USA, 2003), p. 38, ISBN 0-7695-2030-8 [Google Scholar]
  7. M. Hadwiger, P. Ljung, C.R. Salama, T. Ropinski, Advanced illumination techniques for GPU-based volume raycasting, in ACM SIGGRAPH 2009 Courses (ACM, 2009), pp. 1–166 [Google Scholar]
  8. D. Ginsburg, S. Gerhard, J.E. Congote, R. Pienaar, Frontiers in Neuroinformatics (2011) [Google Scholar]
  9. J. Behr, P. Eschler, Y. Jung, M. Zöllner, X3DOM: a DOM-based HTML5/X3D integration model, in Usage, Usability, and Utility of 3D City Models – European COST Action TU0801 (ACM, New York, NY, USA, 2009), Web3D ’09, pp. 127–135, ISBN 978-1-60558-432-4, http://doi.acm.org/10.1145/1559764.1559784 [Google Scholar]
  10. K. Sons, F. Klein, D. Rubinstein, S. Byelozyorov, P. Slusallek, XML3D: interactive 3D graphics for the web, in Usage, Usability, and Utility of 3D City Models – European COST Action TU0801 (ACM, New York, NY, USA, 2010), Web3D ’10, pp. 175–184, ISBN 978-1-4503-0209-8, http://doi.acm.org/10.1145/1836049.1836076 [Google Scholar]
  11. N.W. John, M. Aratow, J. Couch, D. Evestedt, A.D. Hudson, N. Polys, R.F. Puk, A. Ray, K. Victor, Q. Wang, Studies In Health Technology And Informatics 132, 189 (2008) [Google Scholar]
  12. N. Polys, A. Wood, P. Shinpaugh, Departmental Technical Report 1177, Virginia Tech, Advanced Research Computing (2011) [Google Scholar]
  13. J. Congote, MEDX3DOM: MEDX3D for X3DOM, in To be pusblish in Proceedings of the 17th International Conference on 3D Web Technology (ACM, New York, NY, USA, 2012), Web3D ’12 [Google Scholar]
  14. P.K. Smolarkiewicz, L.G. Margolin, On forward-in-time differencing for fluids An Eulerian semi Lagrangian nonhydrostatic model for stratified flows. (1997), Vol. 35, pp. 127–152 [Google Scholar]
  15. A. Beristain, J. Congote, O. Ruiz, Studies in Health Technology and Informatics 173, 53 (2012) [Google Scholar]