Issue |
2012
|
|
---|---|---|
Article Number | 01001 | |
Number of page(s) | 16 | |
Section | Introduction Papers | |
DOI | https://doi.org/10.1051/3u3d/201201001 | |
Published online | 24 October 2012 |
3D models as a platform for urban analysis and studies on human perception of space
Faculty of Architecture & Town Planning, Haifa 32000, Israel
The objective of this work is to develop an integrated visual analysis and modelling for environmental and urban systems in respect to interior space layout and functionality. This work involves interdisciplinary research efforts that focus primarily on architecture design discipline, yet incorporates experts from other and different disciplines, such as Geoinformatics, computer sciences and environment-behavior studies. This work integrates an advanced Spatial Openness Index (SOI) model within realistic geovisualized Geographical Information System (GIS) environment and assessment using subjective residents’ evaluation. The advanced SOI model measures the volume of visible space at any required view point practically, for every room or function. This model enables accurate 3D simulation of the built environment regarding built structure and surrounding vegetation. This paper demonstrates the work on a case study. A 3D model of Neve-Shaanan neighbourhood in Haifa was developed. Students that live in this neighbourhood had participated in this research. Their apartments were modelled in details and inserted into a general model, representing topography and the volumes of buildings. The visual space for each room in every apartment was documented and measured and at the same time the students were asked to answer questions regarding their perception of space and view from their residence. The results of this research work had shown potential contribution to professional users, such as researchers, designers and city planners. This model can be easily used by professionals and by non-professionals such as city dwellers, contractors and developers. This work continues with additional case studies having different building typologies and functions variety, using virtual reality tools.
© Owned by the authors, published by EDP Sciences, 2012
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.